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Non-linear waves in non-planar inhomogeneous dusty plasmas
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Abstract. Taking into account the inhomogeneity of the ion density and dust charging, the propagation of
dust-ion acoustic solitary wave (DIASW) in a non-planar and inhomogeneous dusty plasmas is investigated
analytically. The analytical expressions for the evolution of DIASW and the emitted radiation profiles of
DIASW caused by the combined effects of non-planar geometry and inhomogeneity are obtained.

PACS. 52.25.Vy Impurities in plasmas – 52.35.Fp Electrostatic waves and oscillations (e.g., ion-acoustic
waves)

Nonlinearity, inhomogeneity, dispersivity, and dissipativ-
ity are general features of the dusty plasmas. Hence, rich
non-linear excitation of nonlinear coherent structures ex-
ists in dusty plasmas. Among them, dust ion-acoustic
solitary waves (DIASW) and dust-acoustic solitary waves
(DASW) would be the fundamental nonlinear coher-
ent structures in dusty plasmas [1–5]. Experimental
and theoretical investigations for nonlinear evolution of
DIASW/DASW in dusty plasmas have been paid increas-
ing interests. In recent years, the investigation of the DI-
ASW/DASW are also extended to the nonplanar geom-
etry [6–8] and result in considerable success in clarifying
many aspects of the characteristics of DIASW/DASW.
However, the investigations about DIASW/DASW in
bounded nonplanar cylindrical/spherical geometry are all
focused on homogeneous plasma in which the equilib-
rium quantities are taken as constants. In reality, the
equilibrium states of dusty plasmas in space and labo-
ratory are often nonuniform. In an inhomogeneous dusty
plasma, the inhomogeneity of particle density and dust
charging would play an important role and the proper-
ties of DIASW/DASW will be modified significantly [9–
14]. When the soliton moves through the inhomogeneous
non-planar dusty plasmas, soliton will experiences the in-
stability arises both from the ring curvature (i.e., the
non-planar geometry effect) and the inhomogeneity, and
leads to the instability of sound emission from the soliton.
However, the dynamics, the instability to sound emission
and the profiles of the emitted sound waves of the DI-
AWSW/DASW remains an open question in dusty plas-
mas. It is the aim of the present paper to discuss these
points analytically. Hence, in this letter, taking into ac-
count the ion density inhomogeneity and dust charging
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inhomogeneity, the propagation of DIASW in non-planar
and inhomogeneous dusty plasmas is studied analytically.
The analytical expressions for the evolution of DIASW
and emitted radiation profiles are obtained. We expect
that the present investigation would provide an insight
understanding on the propagation of nonplanar DIASW
in nonuniform dusty plasmas.

Here, we consider an unmagnetized collisionless
plasma consisting of ions, electrons, and cold, extremely
massive, microsized, negatively charged dust grains in
non-planar cylindrical/spherical geometry. We assume
that the DIASW propagates in the radial direction with
cylindrical/spherical symmetry. In low temperature and
pressure plasmas, the basic equations governing the dusty
plasmas for this system are
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where m = 0, 1, 2 refer to one-dimensional, cylindrical,
and spherical geometry, respectively. On ion-acoustic time
scale, the electrons number density ne is given by the local
thermodynamic equilibrium distribution

ne = ne0(r) exp(φ). (4)

The equilibrium density of ions ni0(r) and electrons ne0(r)
are inhomogeneous and vary with r coordinate. The heavy
dust grains in ion-acoustic time scale form a stationary
background with a constant equilibrium density nd. How-
ever, the grain charge Zd can subject to spatial variations
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as well as fluctuations. We assume the grain charge in
equilibrium state (Zd0(r)) is inhomogeneous. So, in the
equilibrium state, the overall charge neutrality satisfy

ni0(r) = ne0(r) + Zd0(r)nd. (5)

The dust charge variation Zd comes in through the
charge current balance equation −edZd/dt = Ie + Ii,
which is valid for grain charging arising from plasma
currents due to electrons (Ie) and ions (Ii) reaching
the grain surface. When the streaming velocities of the
electrons and ions are much smaller than their respec-
tive thermal velocities, the expressions for the elec-
tron and ion currents for spherical grains of radius a
are given by Ie = −πa2e(8Te/πme)1/2ne exp(−zZd),
Ii = πa2e(8Ti/πmi)1/2ni(1 + zZd/σi), where z =
Zd0(r0)e2/Tea, σi = Ti/Te. It is well-known that the char-
acteristic time for dust motion is of the order of tens of
milliseconds for micrometer-sized grains, while the dust
charging time is typically of the order of 10−8 s, therefore,
the motion of dust is not so fast that the contribution
from the electron current to dust is balance for the ions.
It follows that dQd/dt � Ie, Ii and the current balance
equation reads Ie + Ii = 0 and we obtain

αne0 exp(φ − zZd) − ni
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where α =
√

µi/σi, µi = mi/me. In the above equa-
tions, the density of electrons and ions are normal-
ized by ni0(r0). The variables t, r, nd, ui, and φ are
normalized by ω−1

pi (r0) = (mi/4πni0(r0)e2)1/2, λD =
(Te/4πni0(r0)e2)1/2, ni0(r0)Zd0(r0), Cs = (Te/mi)1/2,
and Te/e, respectively. Equations (1–6) govern the prop-
agation of DIASW in inhomogeneous non-planar dusty
plasmas.

To obtain the nonlinear evolution of the DIASW, we
define two slow variables

R = ε3/2r, ξ = −ε1/2
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where ε is a small ordering parameter and v0(r) is the
velocity of the moving frame to be determined later. The
dependent variables can be scaled as

ni = ni0(R) + εn1(R, ξ) + ε2n2(R, ξ) + · · · , (8)

φ = εφ1(R, ξ) + ε2φ2(R, ξ) + · · · , (9)

u = εu1(R, ξ) + ε2u2(R, ξ) + · · · , (10)

Zd = Zd0(R) + εZd1(R, ξ) + ε2Zd2(R, ξ) + · · · , (11)

where the equilibrium quantities are time independent and
are slowly variable functions of R only. Then, substituting
the above expansions into equations (1–6) and collecting
the terms in the different powers of ε, we can obtain each
nth-order reduced equation. To the leading order, we have
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where δ = ne0/ni0, β = z[1 + 1/(σi + zZd0)], v2
0 = [β +

(1−δ)/Zd0]/[βδ+(1−δ)/Zd0]. At the next order, we have
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The solvability condition for equations (14–16) reads
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Equation (17) is a variable coefficients KdV equation de-
scribing the small-amplitude DIASW in the radially in-
homogeneous non-planar dusty plasmas. The last term in
equation (17) refers to the combined effect of non-planar
geometry and inhomogeneity. In the homogeneous case,
equation (17) reduces to the cylindrical/spherical KdV
equation describing the small-amplitude DIASW in the
radially homogeneous dusty plasmas.

Introducing the transformations φ1 = −(6B/A)u, χ =∫
BdR, equation (17) reduces to
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For a planar and homogeneous plasma, i.e., P (χ) = 0,
equation (18) is a one-dimensional KdV equation, which
has a single-soliton solution of the form

u = −2κ2sech2Z, Z = κ[ξ − ϑ(χ)], (19)

where ϑ(χ) = 4κ2χ + ϑ0 is the soliton center (with
dϑ/dχ = 4κ2 being the soliton velocity in the ξ − χ
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reference frame), while κ and ϑ0 are arbitrary constants
presenting the soliton’s amplitude and initial position,
respectively.

Now we discuss the evolution of DIASW of equa-
tion (18) in inhomogeneous non-planar dusty plasmas. An
analytical solution of equation (18) can be obtained by us-
ing a suitable perturbation theory for soliton. In regions
of weak inhomogeneous and for larger soliton ring radius
(this is the most interesting case), the right hand side of
equation (18) can be treated as a small perturbation. The
solution of equation (18) can be expressed as [15]

u = us + ur (20)

where us is the soliton part, which has the same func-
tional form as in the unperturbed homogeneous case (cf.,
Eq. (19)), but with the soliton parameters κ and ϑ being
now unknown functions of χ. The contribution ur,being
of the same order of the smallness as P (χ), denotes the
radiation part of the solution due to the effect of the inho-
mogeneity. According to [15], the soliton’s amplitude κ(χ)
and center ϑ(χ) are determined by
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Integrating of equation (21), one can obtain the soliton’s
amplitude κ2(R)
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and the center ϑ(χ) expressed in terms of the slow vari-
able R
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where κ(R0) is the soliton amplitude at R = R0. It is clear
that, because of the ring curvature (nonplanar geometry)
and the inhomogeneous of the background, the DIASW
amplitude is modified significantly. In a inhomogeneous
non-planar dusty plasmas, the amplitude of DIASW vary

according to equation (22). Following [15], for |Z| � 1,
the radiation part of the soliton is expressed by

ur =
1

12κ(R)B(R)

×
[

m

2R
+

d

dR
ln

(
ni0

v0

∣∣
∣
∣
B(R)
A(R)

∣∣
∣
∣

)]
(1 − tanhZ). (24)

One can find from equation (24) clearly that the sound
emission from soliton is caused by the combined effects of
the ring curvature (nonplanar geometry) and the inhomo-
geneous of the background.

In summary, the evolution of non-planar DIASW in a
inhomogenenous dusty plasmas is studied by a perturba-
tion method. Theoretical analysis shows that the DIASW
is governed by a variable-coefficients KdV equation. The
reduction to the KdV equation may be useful to under-
stand the dynamics of DIASW and will help to get a
deeper insight into the physics of the DIASW in inho-
mogeneous non-planar dusty plasmas. The analytical ex-
pressions for the evolution of soliton and emitted radiation
profiles are also obtained.
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